Indian traditional knowledge systems, and how they can solve all of India’s water, ecological, sociological and industrial problems:
http://www.indianscience.org/index.html
Water Management
Given the importance of fresh water in India, it is no surprise that the technologies to manage water resources were highly advanced from Harappan times onwards. For example, in Gujarat, Chandragupta built the Sudarshan Lake in late 4th century BCE, and was later repaired in 150 BCE by his grandson. Bhopal’s Raja Bhoj Lake, built in 1014-1053, is so massive that it shows up in satellite images. The Vijayanagar Empire built such a large lake in 14th – 15th century CE that it has more construction material than the Great Wall of China. What some historians call the “Persian Wheel” is actually pre-Mughal and indigenous to India.
Scientists estimate there were 1.3 million man-made water lakes and ponds across India, some as large as 250 square miles. These are now being rediscovered using satellite imagery. These enabled rain water to be harvested and used for irrigation, drinking, etc. till the following year’s rainfall.
Comment: It has already been demonstrated how such water management systems implemented in Indian villages have completely transformed the fate of that village, leading to more irrigation, more crops and more wealth.
Textiles
Indian textiles have been legendary since ancient times. The Greeks and Romans extensively imported textiles from India. Roman archives record official complaints about massive cash drainage due to these imports from India.
One of the earliest industries relocated from India to Britain was textiles and it became the first major success of the Industrial Revolution, with Britain replacing India as the world’s leading textile exporter. What is suppressed in the discourse about India and Europe is the fact that the technology, designs and even raw cotton were initially imported from India while, in parallel, India’s indigenous textile mills were outlawed by the British. India’s textile manufacturers were de-licensed, even tortured in some cases, over-taxed and regulated, to ‘civilize’ them into virtual extinction. Textiles and steel were the mainstays of the British Industrial Revolution. Both had their origins in India. The Ahmedabad textile museum is a great resource for scholarly material.
Comment: Reviving the old textile industries in each village will create massive employment in particular for Indian women and clothe all the public. Rather then relying on expensive Western textiles of jeans, t shirts and shirts, cheaper, but higher quality Indian cotten can be again revived using traditional water powered Indian cotton gins, or solar electric powered machines
Iron and Steel
Iron is found in countries neighboring India, leading European scholars to assume that it came from outside India. Given the similarities between the Vedas and Avesta (a Zoroastrian text), some saw this as supporting the theory of diffusion of iron and Vedas into India from the outside. Refuting this, Vibha Tripathi finds that iron in India is much older. (See details in a subsequent chapter.) Cemeteries in present-day Baluchistan have iron objects. The earlier iron found in Middle Eastern archeological sites was essentially meteorite material sculptured as rock/stone carvings, and was not metallurgically processed at all. Since iron can be a by-product of copper technology, this could be its likely origin in India because copper was a well-known technology in many parts of ancient India. A smelting furnace dated 800 BCE is found in Naikund (Maharashtra), India. Recent discoveries reveal that iron was known in the Ganga valley in mid second millennium BCE. In the mid-first millennium BCE, the Indian wootz steel was very popular in Persian courts for making swords.
Rust-free steel was an Indian invention, and remained an Indian skill for centuries. Delhi’s famous iron pillar, dated 402 CE, is considered a metallurgical marvel and shows minimal signs of rust. The famous Damascus steel swords, now displayed in museums across Europe, were made from Indian steel imported by Europeans. The acclaimed Sheffield steel in UK was Indian crucible steel. The best brains of European science worked for decades to learn to reverse-engineer how Indians made crucible steel, and in this process, modern alloy design and physical metallurgy was developed in Europe. (For details see later chapters with book summaries.)
Indian industry was dealt a death blow by the colonial masters who banned the production and manufacture of iron and steel at several places in India, fearing their use in making swords and other arms. In addition, they also ensured India would depend upon iron and steel imported from Europe.
Another important Indian contribution to metallurgy was in the isolation, distillation and use of zinc. From natural sources, zinc content in alloys such as brass can go no higher than 28 per cent. These primitive alloys with less than 28 per cent zinc were prevalent in many parts of the world before India. However, to increase the zinc content beyond this threshold, one must first separate the zinc into 100 per cent pure form and then mix the pure zinc back into an alloy. A major breakthrough in the history of metallurgy was India’s discovery of zinc distillation whereby the metal was vaporized and then condensed back into pure metal.
Europeans learnt it for the first time in 1743, when know-how was transferred from India. Until then, India had been exporting pure zinc for centuries on an industrial scale. At archeological sites in Rajasthan, retorts used for the distillation are found in very large numbers even today.
Once zinc had become separated into a pure metal, alloys could be made with the required zinc component to provide the required properties. For instance, strength and durability increase with higher zinc component. Also, copper alloys look like gold when the zinc component is higher than 28 per cent. Most early brass objects found in other countries had less than 10 per cent zinc component, and, therefore, these were not based on zinc distillation technology.
Alloys that exceed 10 per cent zinc are found earliest in Taxashila in the fourth century BCE. However, while Taxashila was distilling and manufacturing zinc on a small scale, it was in Zawar, Rajasthan, where this first became industrialized on a large scale. Zinc mines have been found in Dariba (11th century BCE), Agucha (sixth century BCE) and Zawar (fifth century BCE). These mines have pots and other manufacturing tools of these dates, but the mining could be even older. (See further details in later chapters.)
Three important items are now proven about the history of zinc metallurgy: (i) zinc distillation and metallurgical usage was pioneered in India; (ii) industrial scale production was pioneered in Rajasthan; (iii) England transferred the technology of zinc from India in 1736. British metallurgy documents do not mention zinc at all prior to this transfer.
Comment: The villagers can establish mines in all the places where there is iron ore, zinc ore etc and using traditional Indian production technology extract the metal from the ore and use it to produce high quality utensils, metalworks, furniture etc. India still has one of the most effective metallurgical techniques which it uses to make statues of its deities and beautiful seamless globes, the lost-wax method.
Forest Management
Many interesting findings have recently come out about the way forests and trees were managed by each village and how a careful method was applied to harvest medicines, firewood and building material in accordance with natural renewal rates. There is now a database being built of ‘sacred groves’ across India. Once again, it’s a story of an economic asset falling into disuse and abuse because of the dismantling of local governance and disrespect for traditional systems.
Furthermore, when scholars try to explain India’s current ecological disasters, they seldom mention the large-scale logging of Indian timber by the British in order to fund the two world wars and various other industrial programs of the empire.
Comment: Through massive tree planations a village can grow herbs, plants, special woods like sandlewood for the use in herbal medicine and cooking
Farming Techniques
Indian farmers developed non-chemical, eco-friendly pesticides and fertilizers that have modern applications. These traditional pesticides have been recently revived in India with excellent results, replacing Union Carbide’s products in certain markets. Crop rotation and soil technology that has been passed down for thousands of years are traditional practices which India pioneered.
Historically, India’s agricultural production was large and sustained a huge population compared to other parts of the world. Surpluses were stored for use in a drought year. But the British turned this industry into a cash cow, exporting very large amounts of grain even during food shortages. This caused tens of millions of Indians to die of starvation in the 19th century.
Comment: Villages can use their own natural fertilizers and pesticides, to develop more organic and ecofriendly crops, grain and food. This will remove the need for them to rely on expensive and environmentally damaging Western style chemical fertilizers and pesticides
Traditional Medicine
Much re-legitimizing of traditional Indian medicine has already started, thanks in part to many Western labs and scientists. Many multinationals no longer denigrate traditional medicine and have in fact been trying to secure patents on Indian medicine without acknowledging the source. Traditional medicine is now a well-known and respected field.
Comment: Each village can set up a traditional Ayurvedic hospital, with expert Ayurvedic physicians to treat all major diseases that affect the villagers. This will reduce the need for villagers to rely on expensive Western pharmaceutical drugs, with their horrible side effects. When the wealth of the village increases modern diagnostic medical tools can be acquired.
Mathematics
Prof. C.K Raju, a renowned scholar, has researched the “clash of epistemologies” that occurred in European ideas about numbers. When Europeans started to import Indian ideas about mathematics, what had been natural to Indian thinkers for a long time was very hard for Europeans to accept. He divides this into three periods:
The first math war in Europe was from 10th to 16th centuries, during which time it took Europe 500 years to accept the zero, because the Church considered it to be heresy.
The second math war was over the Indian concept of indivisibles, which led to the theory of real numbers and infinitesimals, paving the way for the development of calculus. This war lasted three centuries, from the 17th to 19th centuries.
The third math war is now under way and is between computational math (Indian algorithmic approach) and formal math (Western approach).
Additionally, Indians developed many important concepts including the base-ten decimal system, now in global use, and crucial trigonometry and algebra formulae. They made several astronomical discoveries. Diverse schools of logic and philosophy proliferated.
Mathematical thought was intertwined with linguistics. India’s Panini is acknowledged as the founder of linguistics, and his Sanskrit grammar is still the most complete and sophisticated of any language in the world.
Comment: Each village should learn Sanskrit, because of the precise logical structure of its grammar, which will lead to very bright villagers. They should study the traditional philosophical systems of India(logic, physics, psychology, metaphysics, linguistics and theology) and the history of India, in addition to modern science and technology. In order to dispense this learning their should be dedicated Indian schools. Just like prior to the British, when each district had tens of thousands of schools.
In addition there should be guilds for vocational courses to study metallurgy, medicine, water and forest management, agriculture and generating energy, which engage in research to refine their methods. Again, like ancient Indian society.
Relationship with Inner Sciences:
India’s inner sciences of mind and consciousness are simultaneously (a) being appropriated by the West and (b) being depicted as anti-progressive and irrational. In fact, inner and outer realms of inquiry are often viewed as opposites that can, at best, be balanced but not unified. This falsely assumes that the inner sciences make a person and society less productive, creative, and competitive in the outer realm. However, contradicting this, India’s inner sciences and outer development coexisted in a mutually symbiotic relationship.
A strong inner science will definitely strengthen the outer science since it is the inner world which provides the inspiration, creativity, and knowledge that is necessary in the development of a sound outer science. A strong outer science allows the freedom for the exploration of the inner science. Without the use of technology of some form, man will be forced to dwell in his lower nature to satisfy his basic needs of survival.
The divorce of ‘religion’ and science is a strictly Western construct due to the dogmatic and rigid nature of the Abrahamic religions. History-centric religions (such as Judaism, Christianity, and Islam) are often not compatible with the human tendency towards freedom of thought, intellectual originality, and non-conformity of thought which are necessary in scientific innovation. The tradition of spiritual experimentation in India, however, is compatible with the material and intellectual experimentation required by science.
Comment: Each village should have a central meditation hall, where everybody meditates in groups at appointed hours(like in the dome in Auroville) Yoga exercises should be practiced by all villagers as part of their daily schedule. Yoga exercises and meditation should actively be used in school. There should be formal Yoga studios too.
There should be a council of spiritual advisors who work democratically and keep the spirituality of the village alive.